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Abstract The density functional theory (DFT) calculations
are carried out to study the mechanism details and the
ensemble effect of methanol dehydrogenation over Pt3 and
PtAu2 clusters, which present the smallest models of pure Pt
clusters and bimetallic PtAu clusters. The energy diagrams
are drawn out along both the initial O-H and C-H bond
scission pathways via the four sequential dehydrogenation
processes, respectively, i.e., CH3OH → CH2OH → CH2O
→ CHO→ CO and CH3OH→ CH3O→ CH2O→ CHO→
CO, respectively. It is revealed that the reaction kinetics
over PtAu2 is significantly different from that over Pt3. For
the Pt3-mediated reaction, the C-H bond scission pathway,
where an ensemble composed of two Pt atoms is required to
complete methanol dehydrogenation, is energetically more
favorable than the O-H bond scission pathway, and the
maximum barrier along this pathway is calculated to be
12.99 kcal mol-1. In contrast, PtAu2 cluster facilitates the
reaction starting from the O-H bond scission, where the Pt
atom acts as the active center throughout each elementary
step of methanol dehydrogenation, and the initial O-H bond
scission with a barrier of 21.42 kcal mol-1 is the bottom-
neck step of methanol decomposition. Importantly, it is
shown that the complete dehydrogenation product of meth-
anol, CO, can more easily dissociate from PtAu2 cluster than
from Pt3 cluster. The calculated results over the model
clusters provide assistance to some extent for understanding
the improved catalytic activity of bimetal PtAu catalysts
toward methanol oxidation in comparison with pure Pt
catalysts.

Keywords DFT.Methanol oxidation . PtAu bimetallic
nanoparticles . Pt-based catalysts

Introduction

Methanol is considered as one of the most important candi-
dates for storage and production of hydrogen and is a
promising compound in the next generation of renewable
green fuels [1]. Pt-based catalysts are known to possess
excellent catalytic activity for methanol oxidation [2–7].
However, it is well-known that pure Pt catalysts used in
direct-methanol fuel cells (DMFCs) are easily poisoned by
the carbonyl species generated in the electrochemical oxi-
dation of methanol [8]. The use of bimetallic catalysts is
indicated to be one of the solutions to reduce CO poisoning
and improve the catalyst performance [9–11]. Many Pt-
based bimetallic catalysts, such as PtRu [2–4], PtAu [5–7],
PtCo [12], PtMo [13], and PtSn [14, 15], have been found to
have higher activity for the methanol dehydrogenation
reaction with improved resistance to CO poisoning than
pure Pt catalysts, and have been applied successfully to
prototypes of commercial DMFCs. In particular, PtAu
bimetallic nanoparticles, which have attracted much atten-
tion over the past twenty years [16, 17], have been pro-
posed as excellent electrocatalysts for methanol electro-
oxidation [5, 18–23] because Au is more stable than non-
noble metals under the DMFCs operating conditions and
relatively less expensive than other noble metal materials.

A number of elegant experimental studies have contrib-
uted to understanding the intrinsic mechanism of methanol
oxidation over Pt-based catalysts [24–35]. As is shown in
Scheme 1, researchers have proposed two general reaction
pathways: one starts from the O-H bond scission [36], and
the other arises from the breaking of C-H bond [37].
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Theoretically, several groups have also investigated the
mechanism of methanol decomposition on pure Pt catalysts
on atomic and molecular levels [38–40]. However, a general
consensus has still not been reached on which pathway is
preferred in the methanol dehydrogenation reaction. For
example, Greeley and Mavrikakis [38, 39] proposed that
the C-H scission pathway on Pt(111) is dominant, whereas
Watanabe [40] argues that the O-H scission pathway on Pt
surface is energetically favorable. Additionally, there is only
limited knowledge about the mechanism details of the meth-
anol dehydrogenation reaction on PtAu bimetallic catalysts
[41], which is crucial to understand the improved catalytic
activity of the bimetallic catalysts toward methanol oxida-
tion. Furthermore, the ensemble effect that describes the
synergistic behavior of PtAu bimetallic catalysts in specific
arrangements [42, 43] is not understood yet. For example,
Tong et al. [44] proposed that three Pt atoms together on an
ensemble are required for methanol electro-oxidation, while
Cuesta et al. [45] found that an ensemble with two adjacent
Pt atoms exhibits the ability of the methanol oxidation.
Theoretically, by performing DFT calculations, Neurock et
al. found all ensembles composed of 1–4 Pt atoms can
promote methanol oxidation [46], in contrast to the sugges-
tion from Wu [47] that an isolated Pt atom on surface was
inactive for methanol dehydrogenation. These inconsistent
facts appeal to further studies for the methanol dehydroge-
nation to CO over Pt-based catalysts. Within this scenario,
here we present a comparative theoretical study on the
methanol dehydrogenation to CO over pure Pt3 cluster and
bimetallic PtAu2 cluster at the molecular level. On the basis
of the calculated results, we expect to provide a better
understanding about the detailed mechanism and the ensem-
ble effect of methanol dehydrogenation on pure Pt catalysts
and bimetallic PtAu catalysts.

Models and computational details

It is generally accepted that gas-phase clusters can be used
as model systems to shed light on intrinsic mechanisms of
nanocatalysis taking place in realistic and complicated cat-
alytic systems [48, 49]. In this work, we mimic the catalysis
of pure Pt catalysts and bimetallic PtAu catalysts for the

methanol dehydrogenation using the simplest Pt3 and PtAu2
clusters. Given that the ground states of both the clusters are
found to be in their singlets, our calculations for the meth-
anol dehydrogenation over Pt3 and PtAu2 are carried out on
the singlet potential energy surfaces.

The calculations have been performed using the GAUSS-
IAN 03 code [50]. In the framework of density functional
theory (DFT), we employ the hybrid B3LYP [51–53] func-
tional to explore the stationary points on the potential energy
surfaces (PESs). Considering the strong relativistic effects
of Au and Pt, we used the Los Alamos LANL2DZ effective
core pseudopotentials (ECP) and valence double-ζ basis sets
[54, 55] for Au and Pt. The C, H, and O atoms were treated
with the 6-311+G(d,p) basis set. No symmetric constraints
were imposed during geometrical optimizations. Optimized
minima and transition states have been confirmed by
performing analytical vibration frequency calculations. In-
trinsic reaction coordinates (IRC) [56] calculations have
been performed to verify that each saddle point links two
desired minima. Stability tests of wave functions for all
identified stationary points have been carried out to ensure
that the lowest energy solutions in the SCF procedures are
found. All calculations are carried out by resolving restricted
Kohn-Sham equations [57].

Results and discussion

In order to understand the oxidation mechanism of methanol
and to get a complete picture for the methanol dehydroge-
nation, we examined the reaction pathways along O-H and
C-H bond scissions over Pt3 and PtAu2 clusters. Optimized
structures and calculated energy diagrams are shown in
Figs. 1, 2, 3, 4, 5, 6, 7, 8. Note that in this paper, the entropy
change in gas phase is much larger than in the solution
for the bimolecular reaction, because the translation and
rotational movements are suppressed in solution. So in
the present work, relative electronic energies are used to
analyze the reaction mechanism as done in many excel-
lent publications.

In the following sections, we first describe the mecha-
nism details of methanol oxidation starting from both O-H
and C-H bond scissions over Pt3 cluster, and then discuss
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Scheme 1 General reaction
pathways of the methanol
dehydrogenation to CO
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those over PtAu2 cluster. Finally, by comparing the reactiv-
ity difference over two clusters, we elucidate the intrinsic
reason why bimetallic PtAu nanoparticles exhibit improved
catalytic activity toward methanol oxidation.

O-H bond scission branch over Pt3

Figure 1 shows the calculated potential energy profile for
the methanol oxidation over Pt3 starting from O-H bond
scission, and the intermediates and transition states involved
along this pathway are given in Fig. 2. The reaction starts

from the binding of methanol molecule to the on-top site of
a Pt atom through its O atom, forming intermediate IM1.
This scenario is in agreement with the previous works on Pt
surface [38, 40]. In IM1, Pt-O distance is calculated to be
2.220 Å, and the binding energy is predicted to be
17.45 kcal mol-1. As shown in Figs. 1, 2, this pathway
consists of four sequential dehydrogenation steps, CH3OH
→ CH3O → CH2O → CHO → CO, which involves four
transition states (TS1-2, TS2-3, TS3-4, and TS4-5) and five
intermediates (IM1-IM5). The barriers of four elementary
steps are 24.90, 9.24, 13.07, and 14.61 kcal mol-1. Clearly,
the initial O-H bond scission is the rate-determining step,
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Fig. 1 Potential energy profile
of methanol dehydrogenation
starting from O–H bond scission
over Pt3 cluster. The energies
include zero-point energy
corrections
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which is endothermic by 8.71 kcal mol-1. After the O-H
scission, the following three C-H bond scissions are
expected to proceed easily because they are all exothermic
processes with low barriers. We notice that IM5 corresponds
to the product of complete dehydrogenation of methanol,
where all four H atoms in methanol have been transferred to
Pt3 cluster and the adsorbed CO is formed.

As is shown in Fig. 2, the O-H activation of methanol, as
well as the subsequent three C-H activations, takes place
over one Pt atom, implying that the catalytic behavior of
small Pt clusters is significantly different from that of Pt
surfaces, where an ensemble with 2–4 adjacent Pt atoms was
proposed to be necessary to catalyze the reaction [44–46].

C-H bond scission pathway is located at an on-top site
of the cluster

Figure 3 shows the energy profile calculated along the C-H
bond scission pathway, and Fig. 4 collects the optimized
geometries of the intermediates and transition states. This
pathway is more complex than the O-H bond scission path-
way. As shown in Scheme 1, it divides into three branches
after the initial C-H bond scission: (I) CH3OH → CH2OH
→ CH2O → CHO → CO; (II) CH3OH → CH2OH →
CHOH → CHO→ CO; (III) CH3OH→ CH2OH→ CHOH
→ COH → CO.

IM6 is another binding geometry of methanol on Pt3
cluster, where an H atom in methyl interacts with a Pt atom.
It is a necessary configuration for the C-H bond scission
though it is energetically less favorable by 10.83 kcal mol-1

than IM1 discussed above. Such metastable configuration
was also found to be real for methanol adsorption on the Pt
(111) surface [38]. We locate a transition state structure
connecting IM1 and IM6, denoted as TS1-6. The relaxed
rotational barrier from IM1 to IM6 is calculated to be

10.84 kcal mol-1. Once IM6 is formed, the C-H bond scis-
sion can occur via TS6-7 with a barrier of 3.56 kcal mol-1 to
form IM7, a common intermediate along the three branches.

As is shown in Fig. 3, the first branch proceeds according
to the pathway IM7→TS7-8→IM8→TS8-9→IM9→TS9-
10→IM10 after the initial C-H bond cleavage. TS7-8, TS8-
9, and TS9-10 correspond to the transition states dissociating
the O-H bond, the second and third C-H bonds, respectively.
The calculated barriers for these three elementary steps are
8.04, 12.99, and 12.79 kcal mol-1. Note that TS7-8, which
corresponds to the transition state breaking the O-H bond,
involves two Pt atoms. It is found that all the intermediates
and transition states involved along this branch are located
to lie below the reaction entrance. Compared to the other
two branches to be discussed below along the C-H bond
scission pathway, this branch is found to be energetically
most favorable, which proceeds via intermediates CH2OH,
CH2O, and CHO.

The other two branches II and III proceed according to
the pathway of IM7→TS7-11→IM11→TS11-12→IM12→
TS12-13→ IM13 and the pathway of IM7→TS7-11→
IM11→TS11-14→IM14→TS14-5→IM5, respectively. Note
that TS7-11, which corresponds to the transition state acti-
vating the second C-H bond, also involves two Pt atoms. As
seen in Fig. 3, TS7-11, TS11-14, and TS14-5 are located to lie
much above branch I, and so branches II and III are not
expected to be competitive with branch I.

It is noted that the overall reaction for the methanol
dehydrogenation to CO was highly exothermic. IM10,
where four H atom in the methanol molecule have all
transferred onto Pt3 and adsorbed CO has been formed, is
located to lie below the reaction entrance by 18.65 kcal mol-
1. As shown in Fig. 4, all three branches along the initial C-
H bond scission require an ensemble comprised of 2 Pt
atoms to accommodate the intermediates and transition
states.
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Comparing Fig. 3 with Fig. 1, we have seen that the most
favorable C-H bond scission pathway (branch I) also over-
matches the O-H bond scission pathway. Thus we propose
that the methanol oxidation on pure Pt clusters may prefer-
entially proceed according to the C-H scission pathway via
CH2OH, CH2O, and CHO intermediates. This is in agree-
ment with the result on Pt(111) presented by Greeley and
Mavrikakis [39].

From the results above, it is clear that the methanol
decomposition along the C-H scission pathway over Pt3
involves an ensemble with two Pt atoms. In addition, it
is noted that the overall reaction for the methanol de-
hydrogenation to CO was highly exothermic. The ener-
gy needed for CO dissociation from IM10 is calculated
to be as high as 30.27 kcal mol-1, suggesting that the
population of CO on Pt catalysts is large. This is
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consistent with the well-known fact that Pt catalysts are very
easy to be poisoned by CO [58].

O–H bond scission pathway over PtAu2

For the methanol oxidation over PtAu2, two possible situa-
tions have been taken into account: the reaction occurs on Pt
and Au sites, respectively. The calculated results indicate
that the reaction on Pt site is energetically more favorable
than on Au site, implying that the Pt sites in PtAu bimetallic
nanoparticles are the catalytically active center. For exam-
ple, for the reaction of the O-H bond scission on Au site of
PtAu2 cluster, the calculated barrier is 43.91 kcal mol-1,

which is higher by 22.49 kcal mol-1 than that which occurs
on Pt site. For simplification, here we only give the results
for the reaction occurring on Pt active center. Figure 5
shows the energy diagram for the methanol decomposition
on PtAu2 cluster starting from O–H bond scission pathway.
Figure 6 gathers the geometries of intermediates (IM15-
IM19) and transition states (TS15-16, TS16-17, and Ts18-19)
involved along this pathway.

We find that the mechanism details for the reaction over
binary PtAu2 cluster are very similar to that over mono-
metal Pt3 cluster. The reaction starts from the initial inter-
mediate IM15, where the methanol molecule binds to the
on-top site of the Pt site through its O atom. Through four
sequential dehydrogenation steps with barriers of 21.42,
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10.03, 11.45, and 11.96 kcal mol-1, the methanol is finally
oxidized into CO molecule. The rate-determining step is still
the initial O-H bond cleavage, which is lower by 3.48 kcal mol-
1 than that on the Pt3 cluster, implying that PtAu bimetallic
catalysts may facilitate the reaction pathway that starts
from the O-H bond scission. The overall reaction from
the binding of methanol to the formation of CO was
calculated to be exothermic by 1.61 kcal mol-1.

Comparing Fig. 5 with Fig. 1, we observe a remarkable
point that the final CO dissociation from PtAu2 cluster needs
only an energy of 4.34 kcal mol-1, which is much lower than
that (30.27 kcal mol-1) from Pt3 cluster. This indicates that
CO binds more weakly on PtAu2 cluster than on Pt3 cluster.
In other words, the bimetallic cluster can reduce the extent
of CO poisoning [18], which is in agreement with the
observed fact modifying Pt with Au can obviously speed
up the removal of CO poisonous species to maintain the
activity of reaction cycle [59]. From Fig. 6, we note that all
four elementary step activating O-H and C-H bonds occur
on the Pt site. This fact implies that Pt atoms in PtAu
bimetallic catalysts are the main dehydrogenation sites and
the role of Au atoms is to speed up the removal of CO.

As is to be discussed in the following section, the O-H
bond scission pathway over PtAu2 is also relatively more
favorable than the C-H bond scission pathway. This clearly
differs from the reaction over Pt3 cluster, where the reaction
preferentially proceeds along the C-H scission pathway.

C–H bond scission pathway over PtAu2

Similar to the case over Pt3 along the C-H bond scis-
sion pathway, we further studied the methanol dehydro-
genation reaction along three branches shown in
Scheme 1. It is found that in all situations the reaction
prefers to occur on the Pt site to the Au site, implying
that Pt sites in the bimetallic nanoparticles act as the

catalytically active centers (dehydrogenation sites) again.
Figures 7 and 8 show the calculated energy diagrams
and optimized geometries of intermediates and transition
states, respectively.

IM20, where one of the C-H bonds in the methanol
molecule weakly binds to the Pt atom, is a necessary inter-
mediate to carry out the initial C-H bond scission. It arises
from IM15 via TS15-20 with a barrier of 9.25 kcal mol-1.
Once IM20 is formed, it is easily converted into IM21 by
breaking the first C-H bond with a barrier of only
1.98 kcal mol-1. As shown in Fig. 8, after IM21 the reaction
evolves into different branches. Similar to the process over
Pt3, we have seen that branch I (CH3OH → CH2OH →
HCOH→ CHO→ CO, i.e., the pathway IM21→TS21-22→
IM22→TS22-23→ IM23→TS23-24→ IM24 in Fig. 8) is
energetically much more favorable than branch II (CH3OH
→ CH2OH → CH2O → CHO → CO, i.e., the pathway
IM21→TS21-25→ IM25→TS25-26→ IM26→TS26-19→
IM19 in Fig. 8) and branch III ( CH3OH → CH2OH →
HCOH → COH → CO, i.e. IM21→TS21-22→ IM22→
TS22-27→ IM27→TS27-28→ IM28 in Fig. 8). The rate-
determining step of branch I is the formation of TS22-23 with
a barrier of 27.86 kcal mol-1, while those of branches II and
III correspond to the formations of transition states TS21-25
and TS22-27 with barriers of 37.18 and 61.25 kcal mol-1,
respectively. These results suggest that species CH2OH,
HCOH, and CHO involved in branch I might be the most
possible intermediates involved during the methanol dehy-
drogenation reaction if the reaction proceeds according to
the usual CO pathway.

From the discussion above, it is clear that the methanol
decomposition on Pt3 cluster dominantly proceeds along the
initial C-H bond scission pathway, however, it alters to the
O-H bond scission pathway over PtAu2. For the former, the
reaction requires an ensemble composed of two Pt atoms;
while in the situation of the latter, the single Pt atom in
PtAu2 cluster can act as the catalytically active center. In
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particular, we find that the CO dissociation from PtAu2 is
much more favorable than from Pt3 cluster.

It should be noted that our calculations were carried
out in vacuum using the isolated gas-phase cluster mod-
els without considering the effect of solvent on the
reactivity. However, we emphasize that gas-phase clus-
ters are valuable model systems for investigating the
reaction taking place on catalytic surfaces [48]. A study
of the reactions of free clusters can provide useful
information for understanding the mechanisms involved
in the realistic and complicated catalytic systems. In the
present work, our main aim is to present a comparative
study of the relative activation of Pt3 and PtAu2 clusters

toward the methanol dehydrogenation, which is the first
step for understanding the enhanced catalytic activity of
bimetallic PtAu catalysts. On the other hand, it is
expected that the solvent effect should have similar
influence on the reactivity of two clusters, and thus
would not change the main conclusions drawn out from
our present gas calculations.

Conclusions

In summary, we have performed a comparative theoretical
study for methanol dehydrogenation over Pt3 and PtAu2
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clusters. The following conclusions can be drawn out from
the present calculations:

i From an energetic point of view, the methanol dehydro-
genation promoted by Pt3 cluster preferentially proceeds
along the initial C-H bond scission pathway, while the
optimal one for the PtAu2-promoted reaction alters to the
initial O-H bond scission pathway.

ii The barrier of the rate-determining step for Pt3-promoted
reaction is calculated to be 12.99 kcal mol-1, which is
lower than that (21.42 kcal mol-1) for PtAu2-promoted
reaction. However, it is found that the complete dehydro-
genation product of methanol, CO, can much more easily
dissociate from PtAu2 cluster than from Pt3 cluster.

iii The optimal pathway starting from the C-H bond scission
over Pt3 cluster involves an ensemble composed of two Pt
atoms, in contrast, the single Pt atom in PtAu2 can fulfill
the methanol dehydrogenation to CO along the energeti-
cally favorable O-H bond scission pathway.

These conclusions may be enlightening to understand the
detailed mechanism and improved catalytic activity of PtAu
bimetallic catalysts toward methanol oxidation and to fur-
ther design efficient catalysts used in DMFC.
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